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Active magnetic bearings can be implemented with frequency band-reject filtering 
that decreases the bearing stiffness and damping at a small bandwidth around a chosen 
frequency. The control scheme has been used for reducing a rotor dynamic force, such as 
an imbalance force, transmitted to the bearing stator. This study reveals that the 
scheme creates additional system vibration modes at the same frequency. It also shows 
that the amount of force reduction is limited by the stability requirement of these 
modes. 

INTRODUCTION 

The attractive-type active magnetic bearings (AMBs) usually have four quadrants of 
electromagnets (ref. 1). A pair of opposite quadrants independently control the jour- 
nal motion in one direction by a Proportional-Integral-Derivative (PID) controller 
(ref. 2). Steady-state (bias) currents are induced in the quadrants so that the total 
control current in each quadrant never changes polarity. This provides a base for line- 
ar feedback control and greatly simplifies the control circuitry (ref. 3 ) .  

There appears to be a growing interest in applying the AMBs not only for their 
advantageous basic bearing function, but also for their potential to be the rotor force 
isolator (ref. 4 ) .  An AMB can be made extra "soft" at narrow frequency bands, and the 
rotor forces to ground at these frequencies can be dramatically reduced at the sacrifice 
of large rotor runouts. For example, the well-publicized AMB control feature, 
auto-balancing," was designed to reduce imbalance force to ground with the rotor 
rotating about its inertia axis (ref. 2 ) .  However, the creation of these stiffness 
valleys" also creates instability problems for the rotor-AMB system. Herein this type 
of instability problem is addressed analytically while an experimental project is in 
progress. 
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NOMENCLATURE 

AMB active magnetic bearing 
a phase-lead network zero parameter 
B 

b phase-lead network pole parameter 

C radial air gap 

cd proportional feedback gain 

frequency bandwidth of band-pass filter 
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phase-lead feedback gain 
integral feedback gain 

band-pass filter gain 
band-pass filter stability threshold gain 
regulating magnetic force 

magnetic force per pole due to bias current in quadrant 1 or 3 
first-order differential equation 

band-pass factor 
power amplifier gain 

bias current in quadrant 1 or 3 
regulating current 
J--iT 
AM0 stiffness 
current stiffness 

magnetic (negative 1 stiffness 
l e f t  hand side 

mass supported by AM0 

proportional-integral-derivative 

integrator output 
nondimensional frequency parameter defined at a stiffness valley 
right hand side 

Laplace variable 
time 

real stiffness at wC after filter implementation 
real stiffness at wc before filter implementation 
RHS stiffness 
LHS stiffness 

imaginary stiffness at w 

imaginary stiffness at wc before filter implementation 
AMB journal displacement in Y-direction 
band-pass filter output 
phase-lead network output 
net proportional feedback gain contributing to real stiffness 

exciting frequency 
band-pass filter center frequency 

LHS slope frequency 
integrator cut-off frequency 

after filter implementation 
C 
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RHS slope frequency Ur 
dot d/dt 

AU Wc-w 

6 magnetic pole angle 

AMB CONTROL WITH FREQUENCY BAND FILTERING 

Assuming the bias currents are much larger than the regulating currents and the air 
gap is much larger than the journal's normal excursion, the two perpendicular axes of a 
radial AMB can be controlled independently (ref. 3). A control scheme for each axis is 
presented in figure 1. There are four parallel loops processing a journal displacement 
measurement. The top three loops, including a phase-lead network (b > a), form a 
conventional PID controller. The fourth loop comprises a typical second-order 
band-pass filter with the center frequency at W bandwidth B, and gain Cp (ref. 5). 
The filter can have a fixed center frequency or it may vary the center frequency with 
rotor speed. The latter is called a tracking filter and its implementation was 
explained by SKF (ref. 6). The filter output is subtracted from the displacement meas- 
urement that is fed into the phase-lead network. Also, the output multiplied by a gain 
bCd is added to the basic PID signals that control the power amplifier. The gain ACd is 
defined below. 

C '  

where 

Cd = proportional loop gain, volt/m 

G = amplifier gain, A/volt 

Km = magnetic stiffness 
= 2 (F1/C + F3/C)cos6, lb/m 

Ki = current stiffness 
= 2 (Fl/Il + F3/13), lb/amp 

C = radial air gap, m 

I1,I3 = bias current of quadrants 1 or 3, respectively, A 

F1,F3 = magnetic forces per pole due to bias currents, N 

The parameter Km is the "negative spring" effect of the AMB magnetic field. The 
part of the proportional gain to overcome this effect is Km/(KiG). Therefore, ACd is 
the net proportional gain contributing to the AMB stiffness. 

Assuming the power amplifiers are current sources in the bandwidth of interest (G = 
constant), the AMB regulating force across the quadrants 1 and 3 is 

From figure 1, the regulating current is 

i = G [ - cd Y - Cv Z - Ce Q + ACd Cp Yp] 

343 

( 3 )  



where 

Q = [l/(S + uO) l  Y (5) 

Yp = [BS/(S2 + BS + Wc2)1 Y ( 6  1 

Incorporating equations ( 4 1 ,  ( 5 ) ,  and ( 6 )  into equation ( 3 1 ,  which in turn is incorpo- 
rated into equation (21, the AMB reaction transfer function can be expressed by equation 
( 7 ) .  

where 

f = 1 - CpBS/(S2 + BS + Wc2) 

The filter gain Cp ranges from 0 to 1. For AMB without frequency band rejection, 
i.e., Cp = 0 ,  the complex stiffness as a function of exciting frequency is 

-F/Y = [KiG(ACd + Cv(ab + W2)/(b2 + W 2 ) )  + KiGCeUo/(W2 + WO2>I 

+ j U[KiGCv(b - a)/(b2 + W 2 )  - KiGCe/(W2 + WO2)I 

The real part of equation ( 8 )  is the AMB stiffness and the imaginary part is the 
AMB damping. The second terms of both parts are the main contributors to the AMB "stat- 
ic stiffness'' (for small u). The stiffness and damping of a typical AMB are presented 
in figure 2. It may appear unusual that the bearing damping can be negative, but as 
long as no rotor natural vibration mode exists in the frequency range with negative 
damping, there should be no dynamic problem. 

( 8 )  

Figure 3 shows the magnitude of the complex stiffnesses for the same AMB with a 
frequency band rejection. The filter creates a stiffness valley with a depth propor- 
tionalto Cp. WithCp approaching one, adynamic force exerted on the rotor at the center 
frequency can be mostly balanced by the rotor inertia force. Only a small part will be 
resisted by the AMB and thus transmitted to the bearing stator or ground. In the 
following section, a potential stability problem of creating such a stiffness valley 
will be discussed. 

AMB STABILITY AT FILTER CENTER FREQUENCY 

Figure 4 is a zoomed-in view of the stiffness valley of figure 3 .  The local 
complex stiffness decreases and increases sharply but continuously around a center 
frequency Wc in a small bandwidth B. 

Let 

M = rotor mass associated with the AMB 

u, v = real and imaginary parts of complex stiffness, respectively, 
at Wc before the valley was created 
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and 

which implies a natural frequency exists above the filter center frequency. 

Imagine applying a dynamic force to the mass at a frequency W that is slowly 
There will be (if the valley is deep enough) an exciting increasing across the valley. 

frequency, WI1, associated with a LHS slope stiffness, ut, such that, 

&-$?- W Q  

Therefore, W Q  is a resonance frequency. Similarly, there is a RHS slope resonance 
frequency: 

dur/M = Wr 

These discussions are best illustrated by an example shown in figure 5 .  Note that 
these two resonance modes are not due to the filter circuitry alone. They are also 
related to the mass which the AMB sees. It is of less concern how well the modes are 
damped. Presumably, if the exciting force frequency, such as the rotor speed, is not 
drifting away from the filter center frequency, these modes can only be excited by 
impact type loads. Since the filters are usually implemented with narrow bandwidth, 
they will not be excited easily as long as they are reasonably damped and no persistant 
impact load exists. It is a major concern, however, that these modes may not be stable, 
i.e., associated with positive growth factor or negative damping. This can happen when 
the gain Cp is made large or approaching one. For example, the LHS slope mode at 59.4 Hz 
in figure 5 is unstable (growth factor = 120) with Cp = 1. It is therefore important in 
implementing this type of filter to know a threshold stable gain Cp, which is determined 
in the following analysis. 

Let 

and 
A W  = wC - w 

R = ( B / 2 ) / A w  

The band-reject factor in equation ( 7 )  is 

f = 1 - Cp(jBW)/[(Wc 2 - W 2 )  + jBW] 

= [l + (1 - Cp)R2 - jCpR]/(l + R2) 

The complex stiffness around Wc is approximately 

-F/Y = (u + jv) f = U + jV 

where 
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Both U and V are functions of R, which in turn is a function of the exciting 
frequency near 0 . According to equation (121, the RHS mode (R < 0 )  is always more 
damped than the L%S mode. Note that at the center frequency (R = m),  equations (11) and 
(12) become 

u = u (l-Cp) 

and 

v = v (l-Cp) 

Also note that for effective force isolation, the frequency /[u(l - C )]/M should 
be one-third of wc or less. To determine the threshold gain (Cpo) for stabi P ity, it may 
not be overly conservative to require 

which implies by equation (12) 

In the range of 0 to 1, the minimum value of Cpo occurs at the LHS slope where 

R = v/u + /v2/u2 + 1 (14) 

Incorporating equation (14) into equation (131, the relationship between Cpo and v/u is 
plotted in figure 6. For normal AMB applications with v/u < 1, the gain value of Cp 
should be less than 0.83 according to this plot. 

STABILITY OF ROTOR-AMB SYSTEM USING FREQUENCY BAND FILTERING 

When two or more radial AMBs are supporting a rotor, the mass that each AMB sees is 
different at different critical modes. The location of the filter center frequency 
relative to these critical frequencies has a definite influence on the stability prob- 
lem mentioned above. Since the influence is not straight forward, it would be appropri- 
ate to investigate the stability problem in a rotor-AMB dynamic system as follows. 

In a conventional rotordynamics approach, the rotor is modeled as sections of 
circular beams using a finite element method. Concentrated masses and inertias are 
assigned at the nodes of the beam elements for any attachments to the rotor. Gyroscopic 
effect is included. For simplicity, circular orbits can be assumed and are adequate for 
most AMB amplications. For each radial AMB there are two independently controlled axes. 
For each axis, there is a set of first-order differential equations (FODEs) represent- 
ing the AMB dynamics. For example, the control scheme of figure 1 can be represented by 
four FODEs according to equations (41, ( 5 1 ,  and (61, which include the frequency band 
filtering. The rotor-bearing coupling terms exist in equations (2) and (3). 

I 

Combining the dynamic equations of the rotor and AMBs, an electromechanical system 
model can be formulated for eigenvalue evaluation. The formulation procedure is 
straight forward and will not be presented here. A n  example eigenvalue analysis for a 
simple rotor supported by two identical AMBs (fig. 7 )  is used to demonstrate this system 
approach. The key AMB control parameters are identical for all four controlled axes 
(table I). The stiffness and damping of this AMB as functions of frequency have been 
plotted in figure 2. 
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Without the filtering, the system has natural modes at 3000 cpm, 10,000 cpm and 
The rotor-AMB system has been analyzed for the filter centered at 30 Hz and 

The additional LHS mode, which is less stable than the RHS one, is 
The predicted values of Cpo using 

35,000 cpm. 
60 Hz separately. 
presented in table I1 for different values of Cp. 
equations (13) and (141, as noted on table 11, are consistently conservative. 

CONCLUSIONS 

A frequency band-reject scheme for reducing dynamic force to stator at a selected 
frequency may create AMB instability problems. 

From the generic bearing point of view, this study has shown the following: 

1. Depending on the mass supported by the AMB, there can be a natural vibration 
mode corresponding to the stiffness somewhere on each slope of the stiffness 
valley. Thus the frequencies of the induced modes are close to the filter 
center frequency. 

2. There is a limit how deep the stiffness valley can be made without causing 
these modes to be unstable. The limit is related to the local damping-to- 
stiffness ratio before the valley is created. A conservative limit in terms of 
the ratio has been established. 

From the rotor-AMB system point of view, the AMB mass varies with the rotor crit- 
A rigorous approach to determine the stability is to find the eigen- ical mode shapes. 

values of the electromechanical system. 
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TABLE I - RADIAL AMB PARAMETERS 

cP 
0.0 

0.4 

0.5 

0.6 

0.8 

1 .o 

Ki 
Km 

a 

b 
w 
0 

cd 

CV 

Speed = 1800 rpm Speed = 3600 rpm 

w = 30 Hz; Oc = 6 0  Hz; C 

v/u = 0 .25 ;  

Cpo = 0 .4  

v/u = 0.46;  

Cpo = 0.6 

Frequency log. Frequency log. 

(cpm) decrement (cpm) decrement 

1800 0.126 3600 0.126 

1798 0.045 3597 0.064 

1798 0.025 3597 0.049 

1797 0.006 * 3596 0.034 

1796 -0.034 +: 3595 0.003 -? 

1794 -0.072 * 3593 -0.027 * 

Ce 

cP 
wc 
B 

53.5 N/A 

2 . 2 7 ~ 1 0  N/m 

163.3 rad/sec 

978.8 rad/sec 

3.14 rad/sec 

5921 volt/m 

5626 volt/m 

5 

31500 volt/m-sec 

0 to 1 

188.5 rad/sec or 377.0 rad/sec 

7.54 rad/sec or 15.08 rad/sec 

TABLE I1 - ADDITIONAL LHS MODE 

* marginal or unstable modes 
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AN ACTIVE MAGNETIC BEARING CONTROL SCHEME 
WITH FREQUENCY BAND-REJECT FILTERING 
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Figure 1 

STIFFNESS AND DAMPING OF A TYPICAL ACTIVE MAGNETIC BEARING 
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Figure 2 
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COMPLEX STIFFNESS OF A TYPICAL ACTIVE MAGNETIC BEARING 
WITH BAND-REJECT FILTERING 
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Figure 3 

ZOOMED-IN VIEW OF A STIFFNESS VALLEY 
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Figure 4 
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NATURAL FREQUENCY VS. EXCITING FREQUENCY 
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Figure 5 

cpo vs v/u 
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Figure 6 
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ROTOR MODEL 
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Figure 7 
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